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Computer simulations of dynamical systems are discretizations, where the finite 
space of machine arithmetic replaces continuum state spaces. So any trajectory 
of a discretized dynamical system is eventually periodic. Consequently, the 
dynamics of such computations are essentially determined by the cycles of the 
discretized map. This paper examines the statistical properties of the event that 
two trajectories generate the same cycle, Under the assumption that the original 
system has a Sinai-Ruelle-Bowen invariant measure, the statistics of the 
computed mapping are shown to be very close to those generated by a class of 
random graphs. Theoretical properties of this model successfully predict the out- 
come of computational experiments with the implemented dynamical systems. 

KEY WORDS:  Chaos; computation; collapse; computer arithmetic; com- 
puter artifact. 

INTRODUCTION 

There exists a rich qualitative theory of chaotic dynamical systems in terms 
of statistical properties like Sinai-Ruelle-Bowen (SRB) invariant 
measures, t27~ Recall that the probability measure p is called an SRB 
measure for f if there exists a neighbourhood U of the support Supp(p) 
such that p is a weak limit of the sequence of measures p , =  
( n-- I 1/n) Y~i=o f',fi.,- for almost all initial conditions x ~  U with respect to 
Lebesgue measure. Here fix is the Dirac measure concentrated at x and f ,  
is the mapping in the space ~ ( U )  of Borel measures v on U, defined by 
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f ,p (A)=~t( f (A)) ,  where I t ~  and A is a Borel subset of U. Such a 
measure describes the properties of exact trajectories for almost all, with 
respect to Lebesgue measure, initial conditions. Interesting questions arise 
in analysis of space discretizations of systems with SRB invariant measures. 
Many reasonable computer realizations of such systems can be treated as 
deterministic mappings ~o of some finite subset L (such as computer 
arithmetic) into itself and we consider only realizations of such type. Such 
discretizations are also very sensitive to initial conditions and perturba- 
tions, but each trajectory of a spatial discretization is eventually periodic 
and so is not apparently random, as is the case in a continuum. Conse- 
quently, the main long-term statistical properties of a discretization are 
those of its cycles. One of the most important questions in this area 
concerns the size of the basin of attraction of a typical cycle of a typical 
discretization for a given chaotic system. An answer to this problem is 
important in understanding some recently discovered phenomena in the 
modeling of systems with chaotic behavior (see, for instance, ref. 13). 
A natural measure of a basin of attraction of a particular cycle is the 
proportion of points of a lattice which are attracted by this cycle. However, 
even the mean value of such proportions, averaged over all cycles of a par- 
ticular discretization, depends on the discretization in a highly irregular 
and seemingly random way. To circumvent this disconcerting variability, 
we consider ensembles of discretizations and the corresponding statistical 
distributions of characteristics of individual discretizations. 

Erber et al. (refs. 11 and 12 and references therein) studied the 
statistics of basins of attraction for various chaotic dynamical systems. 
Gavelek and Erber ~41 observed that, while simulation of such systems is 
often used to generate statistical information about their average behavior, 
there are no general results guaranteeing that the computed statistics truly 
reflect the theoretical average behavior of the system. Lanford (2-') has con- 
sidered the computer statistics from the viewpoint of finite set mappings in 
computer arithmetic, induced by expansive maps. His experiments showed 
that the number of attractive cycles was small, that their length was short 
relative to the size of the lattice, and that virtually all trajectories were 
attracted to these cycles. 

Although these workers have studied some statistical properties of 
computer simulations and their basins of attraction, systematic models are 
thin on the ground. In particular, there are no statistical models which 
provide distributions for a comprehensive number of statistical properties 
of average behavior of the computer mappings which arise in computa- 
tion. The gist of this paper is that only a few types of limit distributions 
can arise provided that the system under consideration has an SRB 
invariant measure. Moreover, the properties of these distributions can be 
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qualitatively and quantitatively derived from the mathematical analysis of 
simple phenomenological models. 

To obtain results for which the behavior of discretizations may be 
compared with a developed theory, we commence with a well-understood 
one-dimensional family of mappingsfc~(X) = ( 1 - e)( 1 - 11 - 2xl/), 0 ~< x ~< 1. 
The exponent l >~ 1 and e > 0 is a small parameter. The statistical properties 
we study are described in Section 1.1 and our principal results are pre- 
sented in Section 1.2. They are supported by analysis of a stochastic model 
of the discretization procedure. This analysis is mathematically rigorous; 
however, the model itself is, like any phenomenological model, to a certain 
extent heuristic. It is for this reason that the model is formulated as a 
hypothesis and why the additional support by numerical experiments is 
essential. Results of experimental calculations are discussed in Section 1.3. 
Further, in Section 1.4 we consider briefly discretizations of rotations of the 
unit circle with an irrational angle. Although for this mapping the 
Lebesgue measure is an SRB invariant measure, the properties of limit dis- 
tributions of basins of cycles of discretizations of rotations differ. In 
Section 2 some two-dimensional systems, such as the H6non mapping, Lozi 
mapping, and Anosov systems, are considered. There it is shown that some 
regularities mentioned for one-dimensional systems are of general nature 
and are valid for many multidimensional systems with chaotic behavior. 

1. O N E - D I M E N S I O N A L  S Y S T E M S  

1.1. Stat ist ical  Propert ies of Discrete Dynamical  Systems 

Let L be a given finite set and consider the dynamical system 
generated by a mapping q~: L ~ L. By Tr(Co; q~) denote the trajectory of q~ 
originating at C~L, that is, Tr(~0;q~) is the sequence ~--~0, Cl ..... C,,,... 
which is defined by C,,--q~(C,,-t), n = 1, 2 ..... For a positive integer m the 
m-shift of a trajectory ~ is the sequence S" ' (~)= C,,, C,,, +~ .... and this is also 
a trajectory of q~. A trajectory Tr(Co; q~) is called a cycle if there exists a 
positive integer N with Cn= Co. Then Ci = CI+N for all positive integers i. 
The minimal N satisfying ~N--Co is called the period of the cycle. Two 
cycles either do not contain elements in common or one is a shift of the 
other. So the t.otality of cycles is naturally partitioned into a set of equiv- 
alence classes. We will call cycles from the same equivalence class con- 
gruent. Since L is finite, every trajectory ~ of the system is eventually cyclic, 
that is, there exists a positive integer m such that the shifted trajectory 
S"'(~) is a cycle. The minimal m such that S"'(~) is a cycle is the length of  
the transient part of the trajectory ~ and is denoted by ,~(~). The sequence 
Sal~l(~) is the cyclic part of ~. The set L is partitioned into equivalence 
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classes of elements which eventually generate the same cycle. That is, 
elements Go and Co are equivalent if the cyclic parts of trajectories Tr(4o; q~) 
and Tr((o; cp) are congruent. Denote by g(~p) the set of such equivalence 
classes and by E(4; cp) the equivalence class from g(q~) which contains 4. 
Finally, introduce the function B(x; cp) defined by 

# E ( 4 ;  ~o) 
B(~; cp) - , 4 e L  (1.1) 

# ( L )  

Here the symbol # ( A )  denotes cardinality of the set A. 
Let S denote a finite set of nonnegative real numbers from [0, 1]. 

Define the distribution function of the set S, @(.; S): [0, 1 ] ~ [0, 1 ] by 

~(x;S)- #({seS:s~x}) 0~x~<l 
# ( S )  ' 

Denote U(x; q~)=~(x;  {B(~; ~o): 4 e L } ) .  The function U(x; ~o) can be 
interpreted as the distribution in the probability theory sense of the basin 
of attraction of the cyclic part of a trajectory Tr(~o; ~o) with the random 
initial element 4o uniformly distributed in L. We will be interested in the 
mean value V(q~) of the function B(~, q~) averaged over 4 e L. Clearly, 

f~ 1 ~ ( # ( E ) )  2 V(q~) = 1 - U(x;9 )dx=(# (L ) )~E  ~ 

Thus, V(q~) can be interpreted as the probability that two randomly chosen 
elements of L generate the same cycle. We emphasize that the second 
statistic is a scalar, while the first one is a scalar function U(-; ~o) on L. 

These concepts can be applied to discretizations of continuous 
dynamical systems. Let f be a mapping f :  [0, 1 ] ~ [0, 1 ] and let v be a 
positive integer. Consider the lattice L,  = {0, 1Iv ..... ( v -  1 )/v, 1 }. The v-dis- 
cretization of a mapping f :  [0, 1] w-~ [0, 1] is defined by q~(~)= [f(4)] , , ,  
where [0~]~ is a scalar roundoff operator, [o~],,=k/v if (k-O.5)/v<<. 

< (k + 0.5)/v, for an integer k. For v = 2 N the v-discretization is a natural 
theoretical model for implementation of the mapping f in fixed point format 
with N binary digits and radix point in the first position (see, for example, 
ref. 4, pp. 98-100). If ~o is the v-discretization o f f ,  denote B(~; q~) by 
By(4; f ) ,  U(x; q~) by U,,(x; f ) ,  and V(q~)by Vv(f). 

Consider the sequences 

U ( f )  = Ul(X; f ) ,  U (x; f )  ..... Uv(x; f),... (1.2) 

V( f )  = V,(f),  V_(f) ..... Vv(f) .... (1.3) 
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Fig. 1. Mean size Vx+,,(ft.~) as function of n for N= 10 6, I=2, e= 10 -3. 

For large v, elements of these sequences depend on v only irregularly when 
the function f behaves chaotically and the autocorrelation is negligible. For 
instance, Fig. 1 graphs the elements of the finite sequence 

Vu  + 1(f1. ~) ..... V~ + 5oo(f l.~) 

lbr / = 2 ,  e =  l 0  -3 ,  N =  106. However, these sequences do have some 
asymptotic statistical features which can be described. A sequence 
s=s~ ,  s 2 ..... s ..... is said to have the stable distribution property with a limit 
D(x) if limv_ ~ 9 (x ;  { s j, s2 ..... s,} ) = D(x). A discussion of stable statistical 
properties can be found in ref. 20. We will say that the sequence of func- 
tions w,,(x) is Cesfiro stable with a limit D(x) if 

1 ~. wv(x)=D(x)  

Cesfiro stability of the sequence (1.2) can be connected with the stable 
distribution property of a sequence associated with {Bv(~; f ) } .  To this end 
introduce a random sequence 

~ - - ~ ,  ~2 ..... ~,,,... 

where the ~,, are independent and each ~v is uniformly distributed on L~ 
and consider the random sequence 

[~(f) = B~(~l ; f ) ,  Bz(~2; f),..., Bv(~,,; f )  .... (1.4) 
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Proposition 1. Let the sequence (1.4) have with probability 1 
(w.p.1), the stable distribution property with a continuous limit D(x). Then 
the sequence U ( f )  is CesS, ro stable with the same limit. 

1.2. Main Hypothesis 

Let f/,~ denote the mapping [0, 1] ~ [0, 1] which is defined by 

f~, ~(x)--(1 -e)(1  - I 1  - 2 x l  ~) (1.5) 

with parameters l i> 1 and e > 0. 

Hypothesis 1. (a) Let 1 ~</~< 2 and let ft,~ have an absolutely con- 
tinuous SRB measure with positive density. Then the sequence U(f/.~) is 
Ces~tro stable with the limit 1 -  (1 - x )  1/2 and the sequence V(f/.~) has the 
stable distribution property with a continuous limit D v(X) which does not 
depend on e nor on I. 

(b) Let l>~ 2 and let f/,~ have an absolutely continuous SRB measure 
with positive density. Then the sequence U(f/.~) is Ces~ro stable with a 
continuous limit Dr(x;  l, e) and the sequence V(f/.~) has the stable dis- 
tribution property with a limit D v(x; l, e). 

First of all we extract from this hypothesis a corollary which is more 
convenient for interpretation and numerical verification. To this end, recall 
some properties of the set v( l)= {ee (0, 1): fl,~ has an SRB measure}. The 
mappings f~. ~ are unimodal mappings with negative Schwartzian, 

f "  3 (f"'~-' 
f '  2 \ f ' /  < 0  

except at the critical point 1/2. Results of ref. 19 show that the mappings 
f/ . ,  have absolutely continuous SRB invariant measures ~t(l, e) for some sets 
r(l) c [0, 1) and 1 is a density point of each r(l), that is, the Lebesgue 
measure of r(/), mes(r(/)) is positive and 

lim mes([ 1 - 3 ,  1] c~ r ( / ) )_  1 
/ ~ 0  

Note that the set r(/) is not generic in a topological sense, but is a set of 
the first Baire category, that is, a closed set without internal points. 
Hypothesis 1 implies the following assertion. 

Corollary 1. For each l~> 1 there exists a set r ( l ) c [ 0 ,  I) which 
has the number 1 as its density point, such that the following assertions are 
true. 
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(a) For  1 ~<l~<2 and e c r ( l )  the sequence U(fl,~) is Ceshro stable 
with the limit 1 - ( 1  - x )  1/2 and the sequence V(fl, ,) has the stable distribu- 
tion property with a continuous limit Dr(x) which does not depend on e 
nor on l. 

(b) For  l>/2 and er the sequence U(f/.~) is Ces~,ro stable with 
a continuous limit Dr(x; l, e) and the sequence V(fl,~) has the stable dis- 
tribution property with a continuous limit Dr(x; l, e). 

This corollary is strongly supported by results of numerical simula- 
tions to be discussed in the next subsection. This gives strong credence to 
the hypothesis or some very similar supposition. Although not a rigorous 
justification, there are some physical and heuristic arguments which led to 
the adoption of this hypothesis and these are set out below. These not only 
provide a strong motivation, but also give other representations for the 
limit functions above. 

Suppose that we have an ensemble of points i = 0, I ..... K with corre- 
sponding masses 2(i). Connect each point of the ensemble by an arrow to 
its image, which may be itself or another point, such that the image of each 
point is chosen in a random manner with probability proportional to the 
mass of the image. The mapping 7'(. I A) is the random mapping relating to 
each point i the endpoint of the arrow originating at i. This is a random 
graph: arrows between nodes are chosen randomly, but once chosen, they 
are fixed in a realization of the random structure. In particular, a realiza- 
tion of the random mapping is a deterministic discrete dynamical system 
on the set X( K) =  {0, 1 ..... K}. This last property distinguishes random 
mappings from Markov processes. Formally, the mapping Tz, K is defined 
by P( TA, K(i) = j )  = 2j, where 0 ~ i, j ~ K and the image of an element i is 
chosen independently of all other images. 

In the context of this paper one class of random mappings is dis- 
tinguished. Let 

A O = A/(z~ ~- K), ~i = I/(A -4- K), i = 1,..., K (1.6) 

where A/> 1 is a parameter. This parameter can be interpreted roughly as 
the number of points which are attracted by the center 0. Then the corre- 
sponding random mapping is called a random mapping with a single attract- 
ing center and is denoted by Tz, K. In particular, the mapping T~, K is a 
completely random mapping) -'~ 

Any realization T of a random mapping T~j, x is a dynamical system 
on X(K). Therefore the quantity V(T) and the random variable fl(i; T), 
where i is uniformly distributed on X(K), are well defined. It is generally 
recognized that random mappings are good models for analyzing statistical 



720 Diamond et  al.  

properties of discretizations of systems with an SRB invariant 
measure.~23, lVj This observation can be formulated using notations intro- 
duced in the previous section. First, for v = 1, 2 ..... let A,,, K,, be sequences 
of constants, let Tv be a sequence of independent realizations of T~,,.. x,,, and 
let i,, be a sequence of independent random variables uniformly distributed 
on X(K,). This induces a sequence of random equivalence classes E(i,,; T,), 
each from X(K~), and, associated with this, sequences of random variables 

#(E(iv; Tv)) 
fl(i~; Tv)= 

Kv+ 1 

v(Tv) = E(p(i , ;  T,,)I T~) 

Here, E(*ol() denotes the expected value of co conditioned on (. 
This observation can be formalized in terms of the statistical proper- 

ties introduced in the previous section as follows. 

Principle of Correspondence. Let a chaotic dynamical s y s t e m f  
have an SRB invariant measure. Then for v = 1, 2,... there exist constants 
K,,(f), ,/Iv(f) such that the statistical properties of the sequence V ( f )  and 
statistical properties which hold w.p.1 for the random sequence ~(f )  are 
respectively similar to those which hold w.p.1 for the sequences V(Tv) and 
fl(iv;Tv), v = 1, 2 ..... where Tv is a sequence of independent realizations of 
random mappings TA,, ( f ) ,K, , ( f  ) and i,. are independent random variables 
each uniformly distributed in X(Kv). 

Appropriate Kv(fl,~) and A,,(fl,~) for e~z( l )  must be chosen. 
Arguments from ref. 17 suggest Kv(fl. ,)= [ v dimam'*)] , where dim,,(p) is the 
correlation dimension of/~, ~6) and [-~r denotes the integer part of cr This 
leads to the formula 

v if 1 < I < 2  
K'(ft '~)= [vZ/I], if k > 2  

Choice of appropriate A,,(ft. ~) is a little more delicate. It is not enough and 
not natural to choose 2g= 1/ (K+ 1), i = 0  ..... K, that is, to consider com- 
pletely random mappings. Indeed, one point of the lattice L, ,  namely the 
discretized critical point [1/2]v, is not typical because this point 
immediately attracts a proportion O(v j-ja) of other points of the lattice 
and hence should be given a relative weight in the random mapping model 
of O(vJa). This very fact leads naturally to defining Av(fl. ~) consistent with 
(1.6), where A = Av(fl.~)= cv la and K=Kv(fI,~) above. For  more accurate 
but more lengthy reasoning of this kind see ref. 9. Finally, the principle of 
correspondence above can be reformulated in the following form. 
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Principle of Correspondence*. Let eer(l). Then there exists a 
constant c=c(l,e) such that the statistical properties of the sequences 
V(ft.,) and statistical properties which hold w.p. 1 for the random sequence 
II(f) are similar to those which hold w.p.1 for the sequences V(T,), 
fl(i,; T,,), v = 1, 2 ..... where T,, is a sequence of independent realizations of 
random mappings 

Tc,,I/t" [ vmir, l l. 21ll ] 

This principle is not a rigorous theorem, but more a useful guide for 
insights into properties of discretizations of dynamical systems. In other 
words, it can be considered as a phenomenological model of discretizations. 
To apply this principle it is necessary to know the limit properties of the 
sequences of random variables V( T~, K), fl(i,,; T~. k)- Much of this informa- 
tion can be found in refs. 3 and 28; see also ref. 2 and references therein. 
Consider, for instance, some results which are related to the analysis of 
sequences P(f/. ,). 

Define the central componen(3~A(Tj, K) of T~. K as the random subset 
of 1o, 1 . . . . .  

Aa. K = { i e E(K): T'j, K i ~ C for some n} 

Introduce the family of functions 

) (c) {C x / 1 - x  _e,-'/z(x/1_ x)erfc D(x; c ) =  erfc \ v / ~  

Here erfc(x) is the complementary error function 

O ~ x ~ l  (1.7) 

erfc(x) 2 i ~ = e -  ,2 d t ,  x >~ 0 --~.~ 

Clearly, D(x; c) is increasing, with D(0; c ) = 0 ,  D(1; c ) =  1, and D(x; O)= 
1 - ( 1  - x )  '/2. 

Proposition 2. (a) Let A/v/K~O as K--* co. Then the random 
variables a(K).= #(A(T~. K)) converge in distribution to 1 -  ( 1 - x )  '~. 

(b) Let A/x//-K---,c as K ~ o o .  Then the random variables a(K), 
K =  1, 2 ..... converge in distribution to D(x; c). 

Proof. The first assertion follows from Burtin's statement (II), p. 411, 
ref. 3. The second one follows from the formula (10) in ref. 3, p. 410, by the 
usual routine. Note that the seemingly more convenient formula in item 
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(III), p. 411, in the same paper contains a misprint: the denominator of the 
last integrand should be 'q3/2A3/2t - Vl v4 ,1 0 1 - - 0 4 )  1/2 . I 

The proposition above and the Central Statistical Theorem (ref. 25, 
p. 20) imply the following. 

C o r o l l a r y  2. (a) Let 1 < l~< 2. Then the random sequence fl(i,,, Tv), 
where { Tv} is a sequence of independent realizations of random mappings 
{T~v,/~,,} has w.p.1 the stable distribution property with the limit 
1 - ( 1 - x ) i / 2 .  

(b) Let 1~>2. Then the random sequence {fl(i,, T,,)}, where {T,,} is 
the sequence of independent realizations of random mappings { T,.,,~/~, [,,2/q }, 
has w.p.1 the stable distribution property with the limit 

f' De(x; c) =xD(x; c) + D(O; c) dO 
x 

I' [(O_~__x)'' ('__~0 "~ '/2] 
--2I~- + \ O - x J  jdO (1.8) 

From the Principle of Correspondence* and Proposition I, the asser- 
tion (a) above leads to the assertion of Hypothesis l(a) concerning the 
sequence U(f~.~). In the same way, the assertion (b) above leads to the 
statement of Hypothesis l(b) about the sequence U(f/.~). Moreover, we 
arrive at the following representation of the functions D~(x; l, e): 

Dr(x; 1, e) ~ Da(x; c) (1.9) 

where e = e(l, e) is a positive parameter chosen for this to hold. 
We were unable to find an explicit form for the limit distribution 

Dr(x), but that part of the Principle of Correspondence* concerning the 
sequence V(f)  leads to the following formula: 

Dv(x )~  lim DK(x ), Dv(x;l,e),,~ lim DK(x;c) (1.10) 

Here DK(x) denotes the distribution of the random variable V(T~,K), 
whereas Dx(x; c) denotes the distribution of V(T,./2. K) and the parameter 
c is chosen as in (1.9). 

1.3. Numerical  Exper iments 

Case l<.2. The Hypothesis l(a), with respect to the sequence U(fL~), 
implies that for 1 ,~ n ,~ N the function 

N+n 

u(x;f , .~,N,n)= ~. U,,(f,.~) (1.11) 
v : N +  I 
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o~ o!4 o'.6 o:~ 1 

Fig. 2. The function 1-{1--x) I/2 (the smooth line in the middle) against the functions 
u(x;fi.,,N,n) for /=1.0, 1.2, 1.4, 1.6, 1.8, and 2.0, and e = 1 0  -3, N = I 0  6, 11=10 3 (jagged 
lines). 

is close to 1 - ( l - x )  ~/2 for eer( l ) .  By Corollary l(a), the functions 
u ( x ; f i . , , N , n )  are very nearly 1 - ( l - x )  I/2 for most sufficiently small 
e > 0, in the sense of Lebesgue measure, since 1 is a density point of r(l). 
Recall that the set 3(l) where Corollary 1 is applicable is thin in the 
topological sense, because it is a set of the first Baire category. In the con- 
text of numerical experiments below, the measure theory properties clearly 
outweigh the topological properties. 

The functions u(x; f t . , ,  N, n) were calculated for l =  1.0, 1.2, 1.4, 1.6, 
1.8, and 2.0 and e = 10-3, N =  10 6, n = 10 3. Results are shown in Fig. 2. 

Now consider Hypothesis l(a) with respect to the sequence V(ft. ,  ). 
For positive integers N and n consider functions 

v(x; A, ,  N, n) = ~(x; { Vu+ ,(A ~),-.., Y,,+,,(A,)} ) 

The hypothesis with respect to the sequence V(fc .) means that for 
1 ,~ n ,~ N and for e e r(l), functions v(x; fi, ~, N, n) should all be much alike. 
Moreover, since D v ( x ) ~  DK(x) for large K, all these functions are close to 
the distributiola of the r.v. V(T,. K). It is easy to approximate this distribu- 
tion numerically using a random generator. For  an integer K and for 
n =  1 ..... N, consider the mappings i ~  T ~ l ( i ) = a [ i , n ]  where the array 
a[i, ii] is generated by SUN Pascal strings 

for n:=l to N do for i:=O to K do 

begin a[i,n] :=trunc((K+l) * random(i)) ; end; 



724 Diamond e t  al. 

0 

Fig. 3. The distribution ~'~ V(T~ 2}) ..... V(T~~ for K=2'6--1 and 
the functions v(x, f;.~, N, n), /= 1.0, 1.2, 1.4, 1.6, 1.8, and 2.0, and e = 10 - 3 ,  N =  10 6, n = 10 3. 

The formal algorithm is included to indicate the use of a concrete quasiran- 
dom generator which can slightly influence the numerical results. Recall the 
definition of the equivalence class ~ and for each n = 1,..., N, denote 

V(T~")=(K+ 1) -z ~ (#(E))  2 
EE g(TIn)K) 

The mappings T~:, n = 1 ..... N, can be considered as N independent sample 
realizations of the completely random mapping T~, ;c. Therefore, the dis- 
tribution function of the set { V(T~), . . . ,  V(T~N))} should be close to the 
distribution of V(T~. x) for reasonably large K, N. Fig. 3 graphs the dis- 
tribution function 

~ '~  = ~ ( x ;  { V(T~)) ,  V(T~, ~) ..... V(T~~ (1.12) 

for K = 2 J 5 - 1  and the functions v ( x ; f l . ~ , N , n )  for g = 1 0  -3, N = 1 0  6, 
1l= l0 3, and the same l as in Fig. 2. The value K = 2  ~5- 1 was chosen 
simply because this is the size of the standard built-in random generator. 

Case l > 2. Let a specific 1 > 2 be chosen. The hypothesis with respect 
to the sequence U means that for each 1 ,~ ii ,~ N and for e e r(l) the func- 
tions u(x; ft , , ,  Nl,  n) and u(x; f / , , ,  N2, 11) should be similar to one another. 
Further, both functions u(x; f/.~, Nl ,  1l) and u(x; f/,~, N2, i1) should be 
close to a function D(x; c) for an appropriate c = c(l, e) and both functions 
v(x; fc~, Nl,  ii) and v(x; f l . , ,  N2, ii) should be close to a function Dz(x;  c) 
for the same c = c(l, ~). 
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Fig. 4. 

0 2  

i' 

The functions u(x; ft, ~., 105, 103), u(x; fl, ~, 106, 103), and D~d:31(x). 

Consider, for instance l = 3 ,  e =  10 -3. Fig. 4 graphs the functions 
11(3:; fl .e, 105, 103), U(X; f l .e,  106, 103), and Dw(x; 1.53). To get a similar 
figure concerning the second statistic V we need to imitate numerically the 
function limK_ o~ DK(x; c) for c = 1.53. To this end for n = 1 ..... N, consider 
the mappings i~---~ T~C'"~(i)=a[i, n], where the array a[i, n] was generated 
by the SUN Pascal strings 

for n:=l to N do for i:=0 to K do 
begin a[i,n] :=trunc(random(i) *((K+l)+c* sqrt(K))) ; 
if(a[i,n] >K)then a[i,n]=0; end; 

For each n = 1 ..... K, denote 

V(T~:")=(K+ 1) -~- y '  ( # ( E ) )  2 
E e ~'( TOOK) 

The mappings T~?', n = 1 ..... N, can be considered as N independent sample 
realizations of the random mapping T,./~. 1<. Therefore, the distribution 
function of the set { V( T~ l) ..... V(T'~N)} should be close to the distribution 
of V(T,./g.K ). Fig. 5 graphs v(x; ft . , ,  105, 103), v(x; ft . , ,  106, 103), and the 
distribution 

~ '  t53)(X) = ~ (.',:, { V( T~  53"t ) ..... V ( T ~  s3  ̀U)} 

for K = 2 1 5 -  1. 
Comparable results were obtained for other values of l, such as l = 2.5, 

3.25, 3.5, 4.0, etc. 

822/84/3-4-26 
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0 3  0 4  0 5  0 6  O~ 0~1 0 9  . ' . , . I . 

Fig. 5. The functions v(x;f t . , , lO 5, 103) and v(x;J).,, 106, 103) against the distribution 
.~53(x) = ~(x;  { V(T~: 53" ') ..... V(T~53"N)} for K = 2  ~6- 1. 

1.4. Rotat ions of a Circle 

Consider the circle C as the interval [0, 1 ] with points 0 and 1 iden- 
tified. Then rotation of the circle by the angle 2ny in the positive direction 
is interpreted as the angle mapping ~g~.: [0, 1 ] ~  [0, 1] defined by 
x~-~ (x+  y)mod 1. For each positive integer v, denote by L* the lattice Lv 

Y / :  
o!2 0!~ o!6 o18 { 

Fig. 6. The function (6/n 2) ~ >  i/x (1/n2) against u(x; IJ~Cln(2), 105, 103). 
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on [0, 1 ] with 0 and 1 identified and define the corresponding discretiza- 
tion ~O(~) = (~ + [y] , )  mod 1, ~ ~ L*. Define 

1 
D,(x)=~6---5 ~ ~-5 

n >~ I / x  

Proposition 3. Let y be irrational. Then the sequence U ( ~ , )  is 
Ces~ro stable with the limit D . ( x )  and the sequence V(~ . )  coincides with 
U( ~r)" 

The proof follows from the definitions. | 

Figure 6 compares D , ( x )  with the function u(x; ~ / ~ ,  105, 103). 

2. T W O - D I M E N S I O N A L  S Y S T E M S  

2.1. De f in i t ions  

Consider mappings f :  IIU~ R d. Let us define the class of computer 
realizations which we will study. Consider the lattice L d=  v - ~ Z  a, where Z a 
is the standard integer lattice in R a. The L~d-discretizationf, o f f  is defined 
by fv(~) = ( [yt l ) ]  ...... [y"/I]v), where ~ = ( ~ ( I )  . . . . .  ~(d))eLv ,d y = f ( ~ ) E R d ,  
and [. ] ~ is the scalar roundoff operator defined above. Write Q--. a, z e R d, 
p > O, for the cube 

{ x =  (x ~1), x ~2) ..... x~d)) ~ g~d: ixtil _z~i~ I <~p, i=  1 ..... d} 

We will consider trajectories of discretizations originating in Q--'p. 
Throughout, a fixed vector z ~ R a and a fixed number p > 0 will be chosen 
so that all trajectories ~ satisfying ~o e Q:" p are bounded in L d and there- 
fore eventually periodic. As in Section 1.1, there is a natural partition of the 
set Q~" p = Q:" p rn L~ into the set ~ '  P( f )  of equivalence classes. Computa- 
tional statistics of the sequences (1.2) and (1.3) are as follows. For 
v = 1, 2 ..... define 

U~'P(x; f )  = ..~(x, { # (E) (  # Q~'p))- '  : E e  6~ P(f)} ) 

V:,, 'P(f)=( #(Q:,;P)) -2 ~ ( # ( E ) )  2 
E e ~'P(.f) 

Then define the corresponding sequences 

U-" V(x; f )  = { U~" P(x; f ) } ,  V--" "( f )  = { V~" v(f)} 
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2.2. Properties of Some Chaotic Systems 

Several well-known mappings of R-" will be considered. To avoid cum- 
bersome notations we will denote elements of •'- by x = (x, y) and will 
write 0 = (0, 0). Suppose that f h a s  an SRB invariant measure p. The maxi- 
mal open set [2 for which p is a weak limit of the sequence of measures 

i 1 - -  1 p,, = ( l / n )Z i=o  f,~.,- for almost all initial conditions x e/2 with respect to 
Lebesgue measure is the basin of attraction of the measure /z. Also, 
although a great many chaotic systems have SRB invariant measures, it is 
not easy to verify such a property for a measure and it is even more dif- 
ficult to estimate its basin of attraction. In practical situations SRB 
measures can collapse under discretization/5" 6~ Suppression of such collap- 
sing effects is achieved by injecting random or multivalued perturbations 
into the computation or using different regularization methods (see referen- 
ces in refs. 6 and 7). 

Recall the H6non and Lozi mappings, which are defined, respectively, 
by 

fl~,(x;a)=(l + y-ax2, bx), fL(x;a)=(l + y--alxl, bx) 

where a = (a, b) is a vector of real parameters. It is thought that the H6non 
mapping has an SRB measure p for some a, while the Lozi mapping cer- 
tainly has an SRB measure/.t for some a, which was rigorously proved in 
ref. 24. 

Hypothesis 2. For some a, suppose that the H6non mapping 
(respectively, the Lozi mapping) has an SRB invariant measure p and the 
cube Q:'p belongs to the basin of attraction of/z.  Then the sequence 
U--'P('; fn('; a)) [respectively U--'P(.;fL(.; a))] is Cesfiro stable with the 
limit 1 - ( l - x )  I/2 and the sequence V:'P(.;fz~(.;a)) [respectively 
V--'P('; fL( ' ;  a))] has the stable distribution property with limit 
Dr(x) = l imr_  ~ D r .  

Numerical experiments have been carried out to test this hypothesis. 
Let z =  (-0.05,  -0.05)  and p =0.2. Fig. 7 compares the functions 

u-" P(x; f~(  .; 1.4, 0.3), 500, 500), u--' P(x; fL( "; 1.7, 0.5), 500, 500) 

against the function 1 - (  1 -x)1/2. Analogously, Fig. 8 graphs the functions 

v--' P(x; fn( "; 1.4, 0.3), 500, 500), v--" P(x; fL( "; 1.7, 0.5), 500, 500) 

against the function ~~ which was defined in (1.12). The concrete 
values of parameters a, b were taken from ref. 18, p. 269 and from ref. 19, 
p. 203. 
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/ 

'0'.2 o', o!6 o'B i 

Fig. 7. The functions u--'P(x; fH(' ;  1.4, 0.3, N, n)) and u='O(x; ft.( '; 1.7, 0.5, N, n)) (for the 
H~non and Lozi mappings) for z = ( - 0.05, -- 0.05 ), p = 0.2, and N = i1 = 500 against the func- 
tion 1 - ( 1 - x )  m. 

O t h e r  c o m b i n a t i o n s  o f  the  p a r a m e t e r s  were  t r ied for the  H 6 n o n  and  

Lozi  m a p p i n g s .  All  e x p e r i m e n t a l  resul ts  s t rong ly  s u p p o r t  the  h y p o t h e s i s  

above.  Q u i t e  s imi la r  resul ts  were  a lso  o b t a i n e d  for  o t h e r  m a p p i n g s ,  such  as 
the Be lykh  m a p p i n g  def ined  by 

k" ~'(21((x) - 1) + 1, 2 2 ( ( y ) -  1) + 1 if  y > k x  
fB(x ;  ).l,  22, ) = ~ ( 2 ~ ( ( x ) + l ) - l ,  X 2 ( ( y ) + l ) - I  i f  y < k x  

/ /  
0 0~e i 

Fig. 8. The functions v:'P(x; /H(.:1.4, 0.3, N,n)) and v~'P(x;fL(.;].7,0.5, N,n)) for 
z = ( - 0.05, - 0.05 ), p = 0.2, and N = n = 500 against the function (1.12). 
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Here )-i e (0, 1/2), 22 ~(1, 2), k e ( - 1 ,  1) are parameters and (e) is the frac- 
tional part of ~. This mapping arises in phase synchronization systems. It 
is especially interesting because it cannot be reduced in any sense to one- 
dimensional mappings. See further references in ref. 19, p. 203. 

In contrast, consider the shift mapping on a two-dimensional torus 
defined by g(x,y)=((x+a),(y+b)). This mapping also has SRB 
invariant measure which coincides with Lebesgue measure, provided that 
a, b are rationally independent. Nevertheless, the cardinality of the basin of 
attraction in L2~ of each cycle of the corresponding v-discretization clearly 
does not exceed v. In particular, the sequence U(g) is Ces/tro stable with 
a degenerate limit 30, the Dirac distribution at the point 0. Similarly, V(g) 
has the stable distribution property with the limit 30. Much the same 
behavior was observed in experiments for discretizations of an algebraic 
automorphism fA of the standard 2-torus generated by an integer hyper- 
bolic 2-matrix A with Idet (A)I = 1. 

Why should circle rotations, toroidal shifts, and algebraic 
automorphisms of the torus behave so differently from the other mappings 
with an SRB measure considered above? We believe that a reasonable 
explanation is that for all these mappings the discretizations have their own 
algebraic structure. This additional structure precludes the possibility of 
using random mappings as models of discretizations of the original map- 
ping. In particular, the discretizations of these mappings are invertible, and 
consequently the whole lattice is partitioned into disjoint cycles of the map- 
ping. Hence, such mappings contain many more cycles than do mappings 
without algebraic structures on discretizations and the basin of attraction 
of each cycle is much smaller. 

2.3. Well-Spread Measures 

The results discussed above and other numerical experiments with 
modifications of horseshoe and twisted horseshoe mappings and fl-map- 
pings and its two-dimensional analogs, as well as heuristic reasoning, 
suggest the following conjecture involving the idea of a well-spread 
measure. 

Conjec tu re .  Suppose that f has an SRB invariant measure p with 
positive correlation dimension and let a cube Q--' p belong to its basin of 
attraction. Then the sequence U-"P(f) is Ces/tro stable with the limit 
1 - ( 1  -x)1/2 and the sequence V--'P(f) has the stable distribution property 
with the limit D v ( x ) = l i m K ~  Dr  provided that the measure p is well 
spread on its support Supp(/l) and provided that typical discretizations do 
not have a strong algebraic structure. 
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The notion of a well-spread measure is described as follows. Let e > 0 
be fixed and write Y= Supp(/l). A finite subset Z = {x I ..... x,,} ~_ Y is called 
e-separated if ]xi - xjl >>- e e for all i :/: j, 1 ~< i, j ~< n. For  any closed subset 
A ___ Y denote by s,(A) the totality of e-separated subsets Z ~  A. Denote by 
C~(A) the binary logarithm of the maximal cardinality of subsets from 
s~(A). This is called the e-capacity of A. The upper entropy index of Y is 
the value 

C~,(A) (2.1) dim~(A) = lim sup 
~ 0  0<~, <~ Ilog2(el)l 

For a fuller description, see ref. 10. Recall also the definition of correlation 
dimension of a probability measure, t~6~ Suppose that p is a probability 
measure with a compact support Y=Supp(p) .  This measure induces a 
natural probability measure on Y x  Y which is denoted by p2. For  each 
e > 0 let T(e, Y) be a subset of Yx Y which includes all pairs (x, y) with 
I x - y [  ~<e. Introduce the quantity C~(Y,/z) as the absolute value of the 
binary logarithm of/~( T(e, Y)). The correlation dimension of p is the value 

C~,( Y, p) 
dimr"(p) = ~im sup (2.2) 

o<~, <e [1og2(e~) [ 

Proposit ion 4. dim.}:(Y) = max~ dim~(fi), Supp(fi) _~ Y. 

A proof is presented in the next subsection. 

Defini t ion.  The measure p is said to be well spread on Y if it 
satisfies Proposition 4. 

All examples which have been considered suggest that this definition is 
adequate for the conjecture above. If an SRB measure is not well spread, 
then the formulas (1.9) and (1.10) are applicable to the analysis of the 
basin of attraction of discretizations. 

2.4. Proof of Proposit ion 4 

First, to establish the inequality dim~(y)~<dim~(Y), it suffices to 
establish the inequality 

Ilog2(p(T2~( Y)))I ~< log2(Jt/~(I0) (2.3) 

lbr each p, where ~/~(Y) is the maximal cardinality of subsets from s,(A). 
This inequality is the same as 

/.t( T2~ (Y)) >/ j~(Y)-~  (2.4) 
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Let S = { x l  ..... x.,,,-an } be an e-separated set with maximal cardinality. 
Denote by Be(x) the closed ball of radius e centered at x. By definition, 
Y= U;~"__'(~ n B,(x,). Consequently, 

.~1 "d 1"3 

T2.(Y) - U Bz.(X.) x B._~(x.) 
n = l  

and T2.(Y) _~ U;,'"al r~ F,, x F,,, where F,, = Be(x,,) wi=lll"-i B.(xi)). That  is 

, (..,',, n F,,) (2.5) ~(T,_,(Y))>~It ,,~t F,, x 

On the other hand, by construction, 

..,I "el Y) 
Y= U F,, (2.6) 

n =  1 

and F,, r~ F,,, = N for n r m. Thus 

( ..,-,~ n ) .,,~ n 
i t F,, x F,, = ~, i t-(&,) (2.7) 

\ n I n = I 

~ ' ~ " l r ~ , L t ~ -  1. F rom this and (2.7) it fol lows Now,  (2.6) implies that ~ ,,=~ e . . . .  - 
that Itl k.)" ' "',,=~'* n F,, x F,,) >/./g~(Y) - ~. The inequality (2.4) follows from the 
last inequality and (2.5). The inequality (2.3) is now proven. To finish the 
proof it remains to construct a measure/t  satisfying dim',~(lt) = dim):(Y). It 
can be chosen, for instance, in the form It = ~,,~=, 2 -  "#,~1,,~, where ItA~,~ is 
the probability measure distributed uniformly on a suitable finite set A(v). 
The calculation is straightforward and is omitted. II 
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